

A Quick Introduction to Video Game Design in Unity: The Pumpkin Toss Game

Written by Jeff Smith for Unity 5, MonoDevelop and C#

¢ƘŜ ƎŀƳŜ ǿŜΩǊŜ ƎƻƛƴƎ ǘƻ ŎǊŜŀǘe is a variation on the simple yet illustrative wall attack game described by Will Goldstone

in his book (which I own) άUnity 3ΦȄ DŀƳŜ 5ŜǾŜƭƻǇƳŜƴǘ 9ǎǎŜƴǘƛŀƭǎέΦ To learn more about Unity game design and C#

scripting, I highly recommend the book which is available on Amazon.

Basically, in άtǳƳǇƪƛƴ ¢ƻǎǎέΣ ǘƘŜ ǇƭŀȅŜǊ ǿƛƭƭ ōŜ ŀōƭŜ ǘƻ ŦƛǊŜ ǇǊƻƧŜŎǘƛƭŜǎ όǇǳƳǇƪƛƴǎύ ŀǘ ŀ ǿŀƭƭ ƻŦ ōƭƻŎƪǎ όŎǳōŜǎύ ŀƴŘ ōŜ ǎŎƻǊŜŘ

ƻƴ Ƙƻǿ ǎǳŎŎŜǎǎŦǳƭ ƘŜ ƛǎ ŀǘ ƪƴƻŎƪƛƴƎ ǘƘƻǎŜ ōƭƻŎƪǎ ŘƻǿƴΦ ¢Ƙƛǎ ƛǎƴΩǘ ŀ ƎǊŜŀǘ ƎŀƳŜ ǘƘŀǘ ǿƛƭƭ ōŜ ŦŜŀǘǳǊŜŘ ƛƴ ǘƘŜ ƴŜȄt issue of

PC Gamer Magazine; it is a very simple 3D arcade style video game that will be a starting point for learning some core

¦ƴƛǘȅ ŎƻƴŎŜǇǘǎ ŀƴŘΣ ƛƴ ǘƘŜ ǇǊƻŎŜǎǎΣ ǇŜǊƘŀǇǎ ȅƻǳΩƭƭ ƘŀǾŜ ŀ ƭƛǘǘƭŜ ŦǳƴΦ The Pumpkin Toss game can be developed with either

the free or pro version of Unity, and the scripts will be written in C#.

This brief introduction to Unity will cover:

¶ Creating and organizing Unity projects, understanding the Unity Editor, navigating 3D space without getting lost

¶ Core concepts such as scenes, cameras, colliders, transforms, materials, rigidbodies, components, meshes,

images and textures, prefabs, frames and frame rates

¶ Adding lighting to your scene

¶ Adding audio sources

¶ Writing scripts in C#, compiling, using the MonoDevelop debugger, Start(), Update(), and OnGUI() methods

¶ Importing assets from the Unity Asset Store or TurboSquid

Note: This introduction builds the final program in five stages, each one building on the last. I have included all the C#

script source code in this article.

[ŜǘΩǎ DŜǘ Started

/ǊŜŀǘŜ ŀ ƴŜǿ ǇǊƻƧŜŎǘ ƛƴ ¦ƴƛǘȅΦ ¸ƻǳ Ŏŀƴ ƴŀƳŜ ǘƘŜ ǇǊƻƧŜŎǘΣ ƻōƧŜŎǘǎΣ ŀƴŘ ǎŎǊƛǇǘ ǿŜ ŎǊŜŀǘŜ ƛƴ ǘƘƛǎ ǘǳǘƻǊƛŀƭ ŀƴȅǘƘƛƴƎ ȅƻǳΩŘ ƭƛƪŜΣ

ōǳǘ ƛŦ ȅƻǳ ǳǎŜ ǘƘŜ ǎŀƳŜ ƴŀƳŜǎ ǘƘŀǘ L ŘƻΣ ȅƻǳΩƭƭ ǊŜŘǳŎŜ ǘƘŜ ŎƘŀƴŎŜ ƻŦ ƳŀƪƛƴƎ ŀ ƳƛǎǘŀƪŜ ƻǊ ƎŜǘǘƛƴƎ ŎƻƴŦǳǎŜŘ ƛƴ ǘƘŜ ǇǊƻŎŜǎǎΦ

LΩƳ ǎŀǾƛƴƎ Ƴȅ ǇǊƻƧŜŎǘ ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŘƛǊŜŎǘƻǊȅ όŎƘƻƻǎŜ ŀƴȅ ŘƛǊŜŎǘƻǊȅ ȅƻǳ ƭƛƪŜτǘƘŀǘ ǎƘƻǳƭŘƴΩǘ ƳŀǘǘŜǊύΥ

CƻǊ ǘƘƛǎ ǎƛƳǇƭŜ ƎŀƳŜΣ ǿŜ ǿƻƴΩǘ ƴŜŜŘ ǘƻ ƛƳǇƻǊǘ ŀƴȅ ƻŦ ǘƘŜ ǇŀŎƪŀƎŜǎ ƛƴ ǘƘŜ ƭƛǎǘΣ ǎƻ Ƨǳǎǘ ŎƭƛŎƪ ǘƘŜ /ǊŜŀǘŜ ōǳǘǘƻƴΦ A new

project appears in Unity with a blank scene containing nothing but a Main Camera. There are three important areas of

the Unity Editor that warrant explaining: the Hierarchy, Project/Assets, and the Inspector.

When you create a new project in Unity, it initially has only one GameObject, the Main Camera.

What is a camera?

¢ƘŜ ŎŀƳŜǊŀ ƛǎ ȅƻǳǊ ƎŀƳŜ ǇƭŀȅŜǊΩǎ άǾƛŜǿέ ƻŦ ǘƘŜ ŀŎǘƛƻƴ

taking place in the game. He only sees what the camera is

pointing at. First person games typically have a camera,

essentially acting as your eyes, that moves through the 3D

landscape. Third person games typically have the camera

slightly above and behind the character, following

ƘƛƳκƘŜǊ ǘƘǊƻǳƎƘƻǳǘ ǘƘŜ ƎŀƳŜΩǎ о5 ƭŀƴŘǎŎŀǇŜΦ

The camera is a powerful feature that you essentially get άŦƻǊ ŦǊŜŜέ όǘƘŀt is, without having to write a bunch of

complicated low-level visualization/rendering code yourself). Some games have multiple cameras: one camera to display

what the main character can see while a second camera shows a map view of the scene or perhaps the view of a second

character.

You can learn more about cameras here:

http://docs.unity3d.com/Documentation/ScriptReference/Camera.html

[ŜǘΩǎ ǎŀǾŜ ƻǳǊ ǎŎŜƴŜΦ That begs the following question:

What is a scene?

A scene is the little virtual universe within which your

game runs. It contains the GameObjects, the camera,

possibly a terrainτall defined in 3D coordinates. For

many games, each scene can be thought of as a άgame

ƭŜǾŜƭέΤ ŀǎ ŀ ǇƭŀȅŜǊ ŀŘǾŀƴŎŜǎ ǘƘǊƻǳƎƘ ǘƘŜ ƎŀƳŜΣ ƘŜ

encounters these new levels.

bƻǘŜΥ ǿƘŜƴ ȅƻǳ ŦƛǊǎǘ ƭƻŀŘ ŀ ǇǊƻƧŜŎǘ ƛƴ ¦ƴƛǘȅΣ ƛǘ ǳǎǳŀƭƭȅ ŘƛǎǇƭŀȅǎ ǘƘŜ ǎŎŜƴŜ ȅƻǳ ǿŜǊŜ ƭŀǎǘ ǿƻǊƪƛƴƎ ƛƴΦ LŦ ȅƻǳ ŘƻƴΩǘ ǎŜŜ ȅƻǳǊ

GameObjects listed in the Hierarchy, just double click on the scene file from Project/Assets to load it.

Go to top menu άCƛƭŜέ Ą ά{ŀǾŜ {ŎŜƴŜέ ŀƴŘ ƴŀƳŜ ǘƘŜ ǎŎŜƴŜ ά²ŀƭƭ{ŎŜƴŜέΦ Note: as you advance through this tutorial, you

should save your work now and then.

Next we want to add a ground or floor to our game. Our wall of blocks will stand on this floor. A simple way to create a

floor is just to add a Cube GameObject that is big in the X (length) and Z (width) dimensions, but short in the Y (height

dimension).

Go to top menu άDŀƳŜ hōƧŜŎǘέ Ą ά/ǊŜŀǘŜ hǘƘŜǊέ Ą ά/ǳōŜέΣ ŀƴŘ ŀ cube object will appear in the middle of your scene:

Note that a Box Collider appears automatically for our cube in the Inspector on the right.

What is a Collider?

A collider is a component that can be added to a Game

Object (like a cube) and it enables GameObjects to collide

with each other, sending the appropriate collision

ƳŜǎǎŀƎŜǎ ǘƻ ȅƻǳǊ DŀƳŜhōƧŜŎǘΩǎ ǎŎǊƛǇǘǎ ƛƴ ǘƘŜ ǇǊƻŎŜǎǎΦ

You can think of a collider as armor wrapped around your

Game Object that detects when another GameObject

collides with it. There are several different types of

colliders, each with a different basic shape. The box

collider is the perfect choice for a cube primitive, while

the sphere collider is ideal for a round object (like a

pumpkin). For a non-geometric shape (like an airplane),

you may need a more complicated and customized mesh

collider.

Typically in a game, some Game Objects will have colliders (like characters, walls, doors, etc.) while other objects (like a

twig on the ground or a blade of grass) will not. For example, if you have a shrub in your game without a collider, your

character can walk right through it. The more Game Objects there are in a scene with colliders attached to them, the

more calculations the Unity physics engine has to perform, and hence the slower the game runs.

In the Pumpkin Toss game, both the pumpkins thrown as well as the cubes making up the wall, will have colliders

attached to them.

With the Cube selected in the Hierarchy, go to the Inspector on the right and underneath ά¢ǊŀƴǎŦƻǊƳέ change the Scale

to:

X: 100, Y:1, Z:100

What is a Transform?

A transform is a combination of a 3D

position, rotation, and scale. In the 2D

world of web and GUI development,

objects on the screen have an (X,Y) position

and a (width,height) scale. In a 3D

environment, game objects have an extra Z

component to their position, a rotation in

3D space, and an extra Z component to

their scale.

This will turn our cube into a flat panel that can act as a floor in our game. Click on the Cube in the Hierarchy window to

select it and then right click and select Rename (you can also rename by pressing the F2 key). Rename ά/ǳōŜέ ǘƻ άCƭƻƻǊέΦ

LŦ ȅƻǳǊ ǾƛŜǿ ƻŦ ǘƘŜ ŦƭƻƻǊ ŘƻŜǎƴΩǘ ƭƻƻƪ ǎƛƳƛƭŀǊ ǘƻ ǘƘŜ ǎŎǊŜŜƴ ƛƳŀƎŜ ŀōƻǾŜΣ ǳǎŜ ȅƻǳǊ ƳƻǳǎŜ ǘƻ ŎƘŀƴƎŜ ȅƻǳǊ ǾƛŜǿƛƴƎ

perspective. The mouse scroll wheel άzƻƻƳǎέ ȅƻǳ ƛƴ ŀƴŘ ƻǳǘΣ ǇǊŜǎǎƛƴƎ ŀƴŘ ƘƻƭŘƛƴƎ ǘƘŜ ǎŎǊƻƭƭ ǿƘŜŜƭ ǿƘƛƭŜ ƳƻǾƛƴƎ ǘƘŜ

mouse enables you to move the entire wall, and pressing/dragging the right mouse button enables you to rotate the wall

in your field of view.

bŜȄǘΣ ǿŜΩƭƭ ŀŘŘ ŀƴƻǘƘŜǊ /ǳōŜ ǘƘŀǘ ǿƛƭl make up one of the blocks in our game.

Go to top menu άDŀƳŜ hōƧŜŎǘέ Ą ά/ǊŜŀǘŜ hǘƘŜǊέ Ą ά/ǳōŜέ

A cube appearsτnote that you may need to drag it upward (click/drag the green up arrow) to be seen above your floor.

²ŜΩƭƭ ƭŜŀǾŜ ǘƘƛǎ ŎǳōŜΩǎ ŘŜŦŀǳƭǘ ǎŎŀƭŜ ŀƭƻƴe (X: 1, Y:1, Z:1). Note that tƘŜ ŎǳōŜ ŘƻŜǎƴΩǘ ƭƻƻƪ ǾŜǊȅ ƛƴǘŜǊŜǎǘƛƴƎ ŦƻǊ ǘǿƻ

reaǎƻƴǎΦ hƴŜΣ ǿŜ ƘŀǾŜƴΩǘ ƎƛǾŜƴ ƛǘ material properties όŜΦƎΦ ǊŜŘύ ǎƻ ƛǘ ǎǘŀƴŘǎ ƻǳǘ ƛƴ ǘƘŜ ǎŎŜƴŜΦ ¢ǿƻΣ ǿŜ ƘŀǾŜƴΩǘ ŀŘŘŜŘ ŀ

Ǉƻƛƴǘ ƭƛƎƘǘ ȅŜǘ ǘƻ ƛƭƭǳƳƛƴŀǘŜ ǘƘŜ ǎŎŜƴŜΦ ²ŜΩƭƭ ŀŘŘǊess both of these shortcomings.

What is a Material?

A material is used to assign a Shader (a special script that configures how the graphics card will render the object in the

ǎŎŜƴŜύΣ ŀƭƻƴƎ ǿƛǘƘ ǘƘŜ {ƘŀŘŜǊΩǎ ƳŀǘŜǊƛŀƭ ǇǊƻǇŜǊǘƛŜǎ όŜΦƎΦ ƛǘǎ ŎƻƭƻǊΣ ǘŜȄǘǳǊŜόǎύΣ ōǳƳǇƛƴŜss, etc.) to a GameObject. The

renderer then uses the Shader and material properties to render the GameObject in your scene. Textures can be either

images or videos.

Sometimes code examples can be helpful in understanding concepts. IŜǊŜΩǎ ŀn example that simply sets a materialΩǎ

color (which in turn sets thŜ ŎƻƭƻǊ ǳǎŜŘ ōȅ ǘƘŜ ƳŀǘŜǊƛŀƭΩǎ {hader).

GameObject sphere = GameObject.CreatePrimitive(PrimitiveType.Sphere);

sphere.renderer.material.color = Color.red;

IŜǊŜΩǎ ŀ ŎƻŘŜ ŜȄŀƳǇƭŜ ǘƘŀǘ ŀssigns an (image) texture to a sphere GameObject:

Texture crosshairTexture = Resources.Load("crosshair") as Texture; //loads crosshair.png from resources folder

sphere.renderer.material.mainTexture = crosshairTexture;

In our simple Pumpkin Toss game, both the cube and pumpkin (sphere) GameObjects will have materials assigned to

them. The initial versions will just assign a colorτlater versions of Pumpkin Toss will assign textures (images).

Learn more about materials here:

http://docs.unity3d.com/Documentation/Components/class-Material.html

{ƘŀŘŜǊǎ ǿƻƴΩǘ ōŜ ŎƻǾŜǊŜŘ ƛƴ ǘƘƛǎ ǘǳǘƻǊƛŀƭΣ ōǳǘ ȅƻǳ Ŏŀƴ ǊŜŀŘ ƳƻǊŜ ŀōƻǳǘ ǘƘŜƳ ƘŜǊŜΥ

http://docs.unity3d.com/Documentation/Manual/Shaders.html

In our Projecǘ ǿƛƴŘƻǿ ƛƴ ǘƘŜ ōƻǘǘƻƳ ƭŜŦǘ ƻŦ ǘƘŜ ǎŎǊŜŜƴΣ ǿŜΩƭƭ ŀŘŘ ŀ άaŀǘŜǊƛŀƭǎέ ŦƻƭŘŜǊ ǳƴŘŜǊ ά!ǎǎŜǘǎέΦ ²Ŝ ŎƻǳƭŘ Ƨǳǎǘ Ǉǳǘ

everything in the Assets folder, but for more complicated projects, it is preferable to have our assets (e.g. sound files,

images, etc) in convenient and separate folders.

Right click on ά!ǎǎŜǘǎέ Ą ά/ǊŜŀǘŜέ Ą άCƻƭŘŜǊέ ŀƴŘ ƴŀƳŜ ǘƘŜ ƴŜǿ ŦƻƭŘŜǊ άaŀǘŜǊƛŀƭǎέΦ

Now right click on άaŀǘŜǊƛŀƭǎέ Ą ά/ǊŜŀǘŜέ Ą άaŀǘŜǊƛŀƭέ ŀƴŘ ƴŀƳŜ ǘƘŜ ƴŜǿ ƳŀǘŜǊƛŀƭ άǊŜŘaŀǘŜǊƛŀƭέΦ

In the Inspector on the right, click on the άMain ColƻǊέ ŀƴŘ ŎƘƻƻǎŜ ŀ ǊŜŘ ŎƻƭƻǊ ƭƛƪŜ ǎƻΥ

http://docs.unity3d.com/Documentation/Components/class-Material.html

Now that we have a red material, we need to apply it to our cube. Click on the άǊŜŘaŀǘŜǊƛŀƭέ ŀǎǎŜǘ ŀƴŘ ŘǊŀƎ ƛǘ ǳǇ ǘƻ ǘƘŜ

ά/ǳōŜέ ƛƴ ǘƘŜ IƛŜǊŀǊŎƘȅ ǿƛƴŘƻǿ όǳǇǇŜǊ ƭŜŦǘ ƻŦ ǎŎǊŜŜƴύΦ ¸ƻǳǊ ŎǳōŜ ƛǎ ƴƻǿ ǊŜŘΦ LŦ ȅƻǳǊ ŎǳōŜ ƛǎ ǳƴŘŜrneath the floor, you

ǿƻƴΩǘ ōŜ ŀōƭŜ ǘƻ ǎŜŜ ƛǘΦ LŦ ǘƘŀǘΩǎ ǘƘŜ ŎŀǎŜΣ ŎƭƛŎƪ ƻƴ ǘƘŜ ¸ ŀȄƛǎ ŀǊǊƻǿ ŀƴŘ ŘǊŀƎ ƛǘ ǳǇ ŀōƻǾŜ ǘƘŜ ŦƭƻƻǊΦ LŦ ȅƻǳ ŎŀƴΩǘ ŦƛƴŘ ȅƻǳǊ

cube on the screen, select the Cube from the Hierarchy and then press the άCέ ƪŜȅ ǘƻ CƻŎǳǎ ƻƴ ƛǘΦ Lǘ ǎƘƻǳƭŘ appear in the

center of the scene view. You also have the option of selecting the cube and entering the (X,Y,Z) position to (32.83,-

86.77,193.5) manually in the Inspector, so your scene will look similar to mine.

If your cube seems tiny, use your mouse-wheel to zoom closer to it. Your Unity screen should look similar to this one by

this point in the process:

At this point, our game consists of a red cube that will float above the floor. So how do we make it feel the effect of

gravity and fall downwards onto the floor? We add a Rigidbody component to the cube.

What is a Rigidbody?

When you add a Rigidbody component to a GameObject, Unity puts that GameObject under the control of the physics

engine. It will be subject to gravity and can collide with other objects in your scene. While you have the option of simply

resetting the position of a GameObject during runtime of your game, the most realistic looking way to move Rigidbodies

is to apply forces and/or torques to it and then let the physics engine take over from there.

Learn more about Rigidbody here:

http://docs.unity3d.com/Documentation/ScriptReference/Rigidbody.html

Select the cube from the Hierarchy and add the Rigidbody component to it:

Top menu ά/ƻƳǇƻƴŜƴǘέ Ą άtƘȅǎƛŎǎέ Ą άwƛƎƛŘōƻŘȅέ

In the Inspector ƻƴ ǘƘŜ ǊƛƎƘǘΣ ȅƻǳΩƭƭ ǎŜŜ ŀ wƛƎƛŘ.ƻŘȅ section with several attributes, including ά¦ǎŜ DǊŀǾƛǘȅέΦ bƻǿ ǘƘŀǘ ǘƘŜ

cube will be subject to gravity and the physics engine, when it is struck by a pumpkin, it will fall to the floor.

What is a Component?

A component is an attribute of a Game Object (for example, a transform is a component of a Game Object) and the

Component class is the base class for everything attached to Game Objects. You can read more about components here:

http://docs.unity3d.com/Documentation/ScriptReference/Component.html

Since we need a whole wall of red cubes (blocks), we could repeat this process over and over to create all the cubes. It

would be easier, however, to create a single row of blocks first by doing a duplicate operation. Simply select the cube and

then:

Top menu ά9Řƛǘέ Ą ά5ǳǇƭƛŎŀǘŜέΦ

¢ǿƻ ŎǳōŜǎ ŀǇǇŜŀǊ ƛƴ ƻǳǊ IƛŜǊŀǊŎƘȅΣ ōǳǘ ȅƻǳΩƭƭ ƻƴƭȅ ǎŜŜ ƻƴŜ ƻƴ ǘƘŜ ǎŎǊŜŜƴ όǘƘŜ ǘǿƻ ŎǳōŜǎ ŀǊŜ ŜȄŀŎǘƭȅ ƻƴ ǘƻǇ ƻŦ Ŝach

other). Click the Z direction arrow (pointing to the right) and drag your second cube so it is next to the first one. Repeat

this process until you have 10 cubes sitting side by side. If you run out of room on the right side of the Scene window,

simply hold down the mouse wheel and drag the scene to the right. Your scene should now look similar to this:

http://docs.unity3d.com/Documentation/ScriptReference/Component.html

We want to create 8 rows of these blocks, so to achieve ǘƘƛǎΣ ǿŜΩƭƭ ƎǊƻǳǇ ǘƘŜƳ ǘƻƎŜǘƘŜǊ ŀƴŘ ǘƘŜƴ ƳŀƪŜ ŎƻǇƛŜǎ ƻŦ ǘƘƛǎ

group. While not strictly necessary for this game, it is a good practice to group objects together where logical to keep the

Hierarchy window as organized as possible. Top menu άDŀƳŜhōƧŜŎǘέ Ą ά/ǊŜŀǘŜ 9ƳǇǘȅέ

A new game object called άDŀƳŜhōƧŜŎǘέ ǿƛƭƭ ŀǇǇŜŀǊ ƛƴ ǘƘŜ IƛŜǊŀǊŎƘȅ ǿƛƴŘƻǿΦ wŜƴŀƳŜ this to ά/ǳōŜIƻƭŘŜǊέΦ bƻǿ Ƴǳƭǘƛ-

select all the Cube objects in the Hierarchy and drag them to the CubeHolder. Your screen should look similar to this:

Now click on ά/ǳōŜIƻƭŘŜǊέ ŀƴŘ Ǝƻ ǘƻ ǘƻǇ ƳŜƴǳ ά9Řƛǘέ Ą ά5ǳǇƭƛŎŀǘŜέΦ

Drag this new CubeHolder (row) up on top of the first row. Repeat this operation until you have 8 rows like so:

We have our wall! You may want to place your cubes more tightly together that you see in these screen images. If you

ŘƻƴΩǘΣ ǿƘŜƴ ȅƻǳ ǎǘŀǊǘ ȅƻǳǊ ƎŀƳŜ ǘƘŜȅ ǿƛƭƭ ǎŜǘǘƭŜ ŀƴŘ ǊƻŎƪ ŀ bit as they encounter Unity άƎǊŀǾƛǘȅέΦ

 Save your scene and then test your game by clicking the άtƭŀȅέ ŎƻƴǘǊƻƭ ŀǘ ǘƘŜ ǘƻǇΦ ¸ƻǳ Ƴŀȅ ǎŜŜ ǎƻƳŜǘƘƛƴƎ ƭƛƪŜ ǘƘƛǎΥ

Why is my wall so tiny?

Our floor and wall appear tiny because the Main Camera is not in a good location (too far away). Click the άtƭŀȅέ ōǳǘǘƻƴ

again to stop running the game and then click on the Main Camera from the Hierarchy window.

Important Hint

Unity allows you to experiment with settings in the Inspector while a game is running (a useful feature), but any changes

you make are lost once the game stops. So stop your game before making any changes that you want preserved.

The little Camera Preview window within the scene shows you what the camera is άǎŜŜƛƴƎέΦ ½ƻƻƳ ŀǿŀȅ ŦǊƻƳ ǘƘŜ ǿŀƭƭ

(using the mouse wheel) until you can see the Main Camera in the scene:

Make sure the Main Camera is selected in the Hierarchy, and move it closer to the floor and wall by dragging the X, Y, Z

direction arrows. In this scene, if I drag the blue arrow (Z-axis) to the right, my camera moves to the right. If I drag the

green arrow (Y-axis) downwards, my camera will move downwards and closer to the Y coordinate of the άŦƭƻƻǊέΦ !ǎ L

ŀŘƧǳǎǘ ǘƘŜ ŎŀƳŜǊŀΩǎ ǇƻǎƛǘƛƻƴΣ ƴƻǘŜ ǘƘŜ ŎƘŀƴƎŜǎ ƛƴ ǘƘŜ /ŀƳŜǊŀ tǊŜǾƛŜǿ ǿƛƴŘƻǿ όƭƻǿŜǊ ǊƛƎƘǘ of the screen).

I decided to put my camera close to the floor and rotate it to face the wall. For people not familiar with Unity3D or other

3D environments, moving around and rotating in 3D space can be a technical hurdle to overcome. Coming from my own

3D challenged background in web and Java/Flash GUI development, when I first started working in the Unity IDE, I often

found myself lost.

Remember that three metrics: position, rotation, and scale ŎƻƳōƛƴŜ ǘƻ ŦƻǊƳ ŀ ƎŀƳŜ ƻōƧŜŎǘΩǎ Transform. To adjust a

position, rotation, or scale, you can click on the corresponding toggle button on the upper left and then drag the arrows

or rotation angles to the desired settings.

 (Position, Rotation, and Scale controls)

Alternatively, you can type in values for the Transform in the Inspector. I moved and rotated my camera like so:

Note, if you are struggling to get your camera into the right position/rotation, you can always type in the values that I

ǎŜƭŜŎǘŜŘ ŀōƻǾŜ ŦƻǊ ȅƻǳǊ ŎŀƳŜǊŀΩǎ Ǉƻǎƛǘƛƻƴ ŀƴŘ ǊƻǘŀǘƛƻƴΦ bƻǘŜ ǘƘŀǘ ŎƘŀƴƎƛƴƎ ǘƘŜ ŎŀƳŜǊŀΩǎ ǎŎŀƭŜ ŘƻŜǎƴΩǘ ŎƘŀƴƎŜ ǘƘŜ ǾƛŜǿ

όŎŀƳŜǊŀǎ ŀǊŜ ǳƴǳǎǳŀƭ ƛƴ ǘƘŀǘ ǘƘŜȅ ŘƻƴΩǘ ǊŜŀƭƭȅ ƘŀǾŜ ŀ ǎŎŀƭŜύΣ ƘŜƴŎŜ LΩƭƭ ƭŜŀǾŜ ǘƘŜ ǎŎŀƭŜ ŀǘ ό·Υ мΣ ¸Υ 1, Z: 1). With the camera

transform (position/rotation) settings I have selected, the wall is prominently rendered in the Camera Preview window.

When I click the Play button again, my wall appears close enough and is centered in my game view:

